spaCy " />

扫描二维码下载沐宇APP

沐宇

微信扫码使用沐宇小程序

沐宇

spaCy涓€庝箞杩涜鏂囨湰鑱氱被

扬州沐宇科技
2024-05-11 19:12:02
spaCy

鍦╯paCy涓繘琛屾枃鏈仛绫伙紝閫氬父闇€瑕佷互涓嬫楠わ細

  1. 浣跨敤spaCy鍔犺浇鏂囨湰鏁版嵁锛屽苟杩涜鏂囨湰棰勫鐞嗭紝鍖呮嫭鍒嗚瘝銆佽瘝鎬ф爣娉ㄣ€佸疄浣撹瘑鍒瓑銆?/p>

  2. 鎻愬彇鏂囨湰鐨勭壒寰佸悜閲忥紝鍙互浣跨敤璇嶈妯″瀷銆乀F-IDF绛夋柟娉曞皢鏂囨湰杞崲涓烘暟鍊肩壒寰併€?/p>

  3. 浣跨敤鑱氱被绠楁硶瀵规枃鏈繘琛岃仛绫伙紝甯哥敤鐨勮仛绫荤畻娉曞寘鎷琄鍧囧€艰仛绫汇€佸眰娆¤仛绫汇€丏BSCAN绛夈€?/p>

  4. 鍙鍖栬仛绫荤粨鏋滐紝鍙互浣跨敤闄嶇淮绠楁硶濡侾CA鎴杢-SNE灏嗘枃鏈壒寰佸悜閲忛檷缁村埌浜岀淮鎴栦笁缁寸┖闂达紝骞剁敤鏁g偣鍥惧睍绀轰笉鍚岀被鍒殑鏂囨湰銆?/p>

浠ヤ笅鏄竴涓ず渚嬩唬鐮侊紝婕旂ず濡備綍鍦╯paCy涓繘琛屾枃鏈仛绫伙細

import spacy
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

nlp = spacy.load("en_core_web_sm")

# 鍔犺浇鏂囨湰鏁版嵁
data = ["This is an example sentence.",
        "Another example sentence is here.",
        "I am writing a sample text for clustering.",
        "Text clustering is a useful technique."]

# 鏂囨湰棰勫鐞?/span>
processed_data = [nlp(text) for text in data]

# 鎻愬彇鏂囨湰鐗瑰緛鍚戦噺
tfidf_vectorizer = TfidfVectorizer()
tfidf_matrix = tfidf_vectorizer.fit_transform([text.text for text in processed_data])

# 浣跨敤K鍧囧€艰仛绫荤畻娉曡繘琛屾枃鏈仛绫?/span>
kmeans = KMeans(n_clusters=2)
clusters = kmeans.fit_predict(tfidf_matrix)

# 鍙鍖栬仛绫荤粨鏋?/span>
plt.scatter(tfidf_matrix.toarray()[:, 0], tfidf_matrix.toarray()[:, 1], c=clusters, cmap='viridis')
plt.xlabel("Feature 1")
plt.ylabel("Feature 2")
plt.show()

鍦ㄨ繖涓ず渚嬩唬鐮佷腑锛屾垜浠鍏堝姞杞戒簡spaCy妯″瀷锛岀劧鍚庡姞杞戒簡涓€浜涙枃鏈暟鎹紝瀵规枃鏈暟鎹繘琛屼簡棰勫鐞嗗拰鐗瑰緛鎻愬彇锛屾渶鍚庝娇鐢↘鍧囧€艰仛绫荤畻娉曞鏂囨湰杩涜浜嗚仛绫伙紝骞堕€氳繃鏁g偣鍥惧睍绀轰簡鑱氱被缁撴灉銆?/p>

扫码添加客服微信