鎬庝箞浣跨敤spaCy缁樺埗PR鏇茬嚎
瑕佷娇鐢╯paCy缁樺埗PR鏇茬嚎锛岄鍏堥渶瑕佸畨瑁卻paCy鍜岀浉鍏崇殑搴撱€傜劧鍚庯紝鍙互鎸夌収浠ヤ笅姝ラ杩涜锛?/p>
-
鍔犺浇鏁版嵁闆嗭細棣栧厛鍔犺浇鍖呭惈姝g‘鏍囩鍜屾ā鍨嬮娴嬫爣绛剧殑鏁版嵁闆嗐€?/p>
-
璁$畻绮剧‘鐜囧拰鍙洖鐜囷細浣跨敤鏁版嵁闆嗕腑鐨勬纭爣绛惧拰妯″瀷棰勬祴鏍囩璁$畻姣忎釜闃堝€间笅鐨勭簿纭巼鍜屽彫鍥炵巼銆?/p>
-
缁樺埗PR鏇茬嚎锛氫娇鐢ㄨ绠楀緱鍒扮殑绮剧‘鐜囧拰鍙洖鐜囨暟鎹紝缁樺埗PR鏇茬嚎銆?/p>
浠ヤ笅鏄竴涓ず渚嬩唬鐮侊紝婕旂ず濡備綍浣跨敤spaCy缁樺埗PR鏇茬嚎锛?/p>
import spacy
from spacy import displacy
from sklearn.metrics import precision_recall_curve
import matplotlib.pyplot as plt
# 鍔犺浇鏁版嵁闆?/span>
# Assume `y_true` contains true labels and `y_pred` contains predicted labels
y_true = [0, 1, 1, 0]
y_scores = [0.1, 0.9, 0.8, 0.3]
# 璁$畻绮剧‘鐜囧拰鍙洖鐜?/span>
precision, recall, _ = precision_recall_curve(y_true, y_scores)
# 缁樺埗PR鏇茬嚎
plt.figure()
plt.step(recall, precision, color='b', alpha=0.2, where='post')
plt.fill_between(recall, precision, alpha=0.2, color='b')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.title('Precision-Recall curve')
plt.show()
閫氳繃杩愯涓婅堪浠g爜锛屾偍灏嗚幏寰椾竴涓寘鍚玃R鏇茬嚎鐨勫浘琛ㄣ€傛偍鍙互鏍规嵁鑷繁鐨勯渶瑕佷慨鏀逛唬鐮佷互閫傚簲鎮ㄧ殑鏁版嵁闆嗗拰妯″瀷棰勬祴銆?/p>