Matplotlib鎬庝箞涓巗cikit-learn鑱斿悎浣跨敤
Matplotlib鏄竴涓敤浜庣粯鍒跺浘褰㈢殑Python搴擄紝鑰宻cikit-learn鏄竴涓敤浜庢満鍣ㄥ涔犵殑Python搴撱€備綘鍙互浣跨敤Matplotlib鏉ュ彲瑙嗗寲scikit-learn涓殑鏁版嵁鍜屾ā鍨嬨€?/p>
涓嬮潰鏄竴涓畝鍗曠殑渚嬪瓙锛屽睍绀哄浣曚娇鐢∕atplotlib鍜宻cikit-learn涓€璧峰伐浣滐細
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.cluster import KMeans
# 鍔犺浇鏁版嵁闆?/span>
iris = datasets.load_iris()
X = iris.data
y = iris.target
# 浣跨敤KMeans绠楁硶杩涜鑱氱被
kmeans = KMeans(n_clusters=3)
kmeans.fit(X)
y_kmeans = kmeans.predict(X)
# 灏嗚仛绫荤粨鏋滃彲瑙嗗寲
plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, cmap='viridis')
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, alpha=0.5)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.show()
鍦ㄨ繖涓緥瀛愪腑锛屾垜浠鍏堝姞杞戒簡楦㈠熬鑺辨暟鎹泦锛屽苟浣跨敤KMeans绠楁硶灏嗘暟鎹垎涓?涓皣銆傜劧鍚庯紝鎴戜滑浣跨敤Matplotlib缁樺埗浜嗘暟鎹偣鍜岃仛绫讳腑蹇冪偣鐨勬暎鐐瑰浘锛屼互鍙鍖栬仛绫荤粨鏋溿€?/p>
閫氳繃缁撳悎浣跨敤Matplotlib鍜宻cikit-learn锛屼綘鍙互鏇村ソ鍦扮悊瑙e拰灞曠ず鏈哄櫒瀛︿範妯″瀷鐨勭粨鏋溿€備綘鍙互鏍规嵁闇€瑕佹潵璋冩暣鍥惧舰鐨勬牱寮忓拰鍙傛暟锛屼互鑾峰緱鏇村ソ鐨勫彲瑙嗗寲鏁堟灉銆?/p>