python灞傛鑱氱被绠楁硶鎬庝箞瀹炵幇
灞傛鑱氱被鏄竴绉嶅熀浜庤窛绂诲害閲忕殑鑱氱被绠楁硶锛岄€氳繃閫愭鍚堝苟鏈€鐩镐技鐨勬暟鎹偣鎴栬仛绫绘潵鏋勫缓涓€涓仛绫绘爲銆侾ython涓彲浠ヤ娇鐢╯cikit-learn搴撲腑鐨凙gglomerativeClustering鏉ュ疄鐜板眰娆¤仛绫荤畻娉曘€?/p>
浠ヤ笅鏄竴涓娇鐢ˋgglomerativeClustering瀹炵幇灞傛鑱氱被鐨勭ず渚嬩唬鐮侊細
import numpy as np
from sklearn.cluster import AgglomerativeClustering
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
# 鐢熸垚闅忔満鏁版嵁
X, y = make_blobs(n_samples=100, centers=3, random_state=42)
# 浣跨敤AgglomerativeClustering杩涜灞傛鑱氱被
clustering = AgglomerativeClustering(n_clusters=3)
clustering.fit(X)
# 鍙鍖栬仛绫荤粨鏋?/span>
plt.scatter(X[:, 0], X[:, 1], c=clustering.labels_, cmap='rainbow')
plt.show()
鍦ㄤ笂闈㈢殑绀轰緥涓紝棣栧厛鐢熸垚浜嗕竴涓殢鏈虹殑3绫绘暟鎹泦锛岀劧鍚庝娇鐢ˋgglomerativeClustering鎸囧畾3涓仛绫伙紝骞跺鏁版嵁杩涜鑱氱被銆傛渶鍚庯紝閫氳繃matplotlib搴撳彲瑙嗗寲浜嗚仛绫荤粨鏋溿€?/p>
閫氳繃璋冩暣AgglomerativeClustering鐨勫弬鏁帮紝姣斿鑱氱被鏁扮洰銆侀摼鎺ユ柟寮忕瓑锛屽彲浠ヨ繘涓€姝ヤ紭鍖栬仛绫绘晥鏋溿€傚鏋滈渶瑕佹洿澶氬畾鍒跺寲鐨勫眰娆¤仛绫荤畻娉曪紝涔熷彲浠ヨ€冭檻浣跨敤SciPy搴撲腑鐨刪ierarchical鑱氱被鏂规硶銆?/p>
相关问答