python鎬庝箞浣跨敤kmeans鑱氱被鐨勫寘
Python鏈夊緢澶氬寘鍙互鐢ㄦ潵瀹炵幇KMeans鑱氱被锛屽叾涓瘮杈冨父鐢ㄧ殑鍖呮湁scikit-learn
鍜?code>KMeans銆備笅闈㈡槸浣跨敤杩欎袱涓寘杩涜KMeans鑱氱被鐨勭ず渚嬩唬鐮侊細
浣跨敤scikit-learn鍖咃細
from sklearn.cluster import KMeans
# 鍒涘缓KMeans妯″瀷锛岃缃仛绫讳釜鏁颁负k
kmeans = KMeans(n_clusters=k)
# 璁粌妯″瀷
kmeans.fit(data)
# 棰勬祴鏍锋湰鐨勮仛绫绘爣绛?/span>
labels = kmeans.predict(data)
# 鑾峰彇鑱氱被鐨勪腑蹇冪偣
centers = kmeans.cluster_centers_
浣跨敤KMeans鍖咃細
from kmodes.kmodes import KModes
# 鍒涘缓KModes妯″瀷锛岃缃仛绫讳釜鏁颁负k
km = KModes(n_clusters=k, init='Huang', n_init=5, verbose=1)
# 璁粌妯″瀷
clusters = km.fit_predict(data)
# 鑾峰彇鑱氱被鐨勪腑蹇冪偣
centers = km.cluster_centroids_
杩欐槸涓や釜涓嶅悓鐨勫寘锛?code>scikit-learn鐨凨Means閫傜敤浜庢暟鍊煎瀷鏁版嵁锛?code>kmodes.kmodes鐨凨Modes閫傜敤浜庣鏁e瀷鏁版嵁銆傛牴鎹綘鐨勬暟鎹被鍨嬮€夋嫨鍚堥€傜殑鍖呰繘琛岃仛绫汇€?/p>