濡備綍鍦≒ython涓娇鐢ㄦ暟鎹垎鏋愬簱
鍦≒ython涓紝鏈夊緢澶氭暟鎹垎鏋愬簱鍙互浣跨敤锛屽叾涓渶娴佽鐨勫寘鎷琍andas銆丯umPy銆丮atplotlib鍜孲eaborn銆備互涓嬫槸濡備綍浣跨敤杩欎簺鏁版嵁鍒嗘瀽搴撶殑绠€鍗曠ず渚嬶細
- Pandas锛歅andas鏄竴涓己澶х殑鏁版嵁鍒嗘瀽搴擄紝鍙互鐢ㄤ簬鏁版嵁娓呮礂銆佹暟鎹垎鏋愬拰鏁版嵁鍙鍖栥€備笅闈㈡槸涓€涓娇鐢≒andas鍔犺浇鍜屾煡鐪嬫暟鎹殑绀轰緥浠g爜锛?/li>
import pandas as pd
# 璇诲彇CSV鏂囦欢
data = pd.read_csv('data.csv')
# 鏌ョ湅鏁版嵁鐨勫墠鍑犺
print(data.head())
- NumPy锛歂umPy鏄疨ython涓敤浜庣瀛﹁绠楃殑鍩虹搴擄紝鎻愪緵浜嗗缁存暟缁勫璞″拰鍚勭鏁板鍑芥暟銆備笅闈㈡槸涓€涓娇鐢∟umPy璁$畻鏁扮粍鐨勫钩鍧囧€煎拰鏍囧噯宸殑绀轰緥浠g爜锛?/li>
import numpy as np
# 鍒涘缓涓€涓狽umPy鏁扮粍
arr = np.array([1, 2, 3, 4, 5])
# 璁$畻鏁扮粍鐨勫钩鍧囧€煎拰鏍囧噯宸?/span>
mean = np.mean(arr)
std = np.std(arr)
print('Mean:', mean)
print('Standard Deviation:', std)
- Matplotlib锛歁atplotlib鏄竴涓敤浜庣粯鍒跺浘琛ㄥ拰鍙鍖栨暟鎹殑搴撱€備笅闈㈡槸涓€涓娇鐢∕atplotlib缁樺埗鎶樼嚎鍥剧殑绀轰緥浠g爜锛?/li>
import matplotlib.pyplot as plt
# 鍒涘缓鏁版嵁
x = [1, 2, 3, 4, 5]
y = [2, 4, 6, 8, 10]
# 缁樺埗鎶樼嚎鍥?/span>
plt.plot(x, y)
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Line Plot')
plt.show()
- Seaborn锛歋eaborn鏄竴涓熀浜嶮atplotlib鐨勬暟鎹彲瑙嗗寲搴擄紝鎻愪緵浜嗘洿楂樼骇鐨勭粯鍥惧姛鑳藉拰鏇寸編瑙傜殑鍥捐〃鏍峰紡銆備笅闈㈡槸涓€涓娇鐢⊿eaborn缁樺埗鐩存柟鍥剧殑绀轰緥浠g爜锛?/li>
import seaborn as sns
import numpy as np
# 鐢熸垚闅忔満鏁版嵁
data = np.random.normal(size=1000)
# 缁樺埗鐩存柟鍥?/span>
sns.histplot(data, kde=True)
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.title('Histogram')
plt.show()
閫氳繃浣跨敤杩欎簺鏁版嵁鍒嗘瀽搴擄紝鎮ㄥ彲浠ユ洿杞绘澗鍦板鐞嗗拰鍒嗘瀽鏁版嵁锛屼粠鑰屾洿濂藉湴鐞嗚В鏁版嵁骞跺仛鍑烘洿濂界殑鍐崇瓥銆?/p>
相关问答