NumPy鎬庝箞涓嶥ask闆嗘垚浣跨敤
Dask鏄竴涓敤浜庡苟琛岃绠楃殑寮€婧愬簱锛屽畠鍙互涓嶯umPy涓€璧蜂娇鐢ㄤ互瀹炵幇鏇撮珮鏁堢殑璁$畻銆備互涓嬫槸浣跨敤NumPy鍜孌ask闆嗘垚鐨勪竴浜涘父瑙佹柟娉曪細
- 浣跨敤Dask Array浠f浛NumPy Array锛欴ask Array鏄竴涓欢杩熻绠楃殑鏁版嵁缁撴瀯锛屽畠鍙互灏嗗ぇ鍨嬫暟缁勫垎鎴愬涓皬鍧楋紝骞跺厑璁稿苟琛岃绠椼€傛偍鍙互浣跨敤Dask Array浠f浛NumPy Array锛屼互瀹炵幇鏇撮珮鏁堢殑骞惰璁$畻銆?/li>
import dask.array as da
# 鍒涘缓涓€涓狣ask Array
x = da.random.random((1000, 1000), chunks=(100, 100))
# 璁$畻鏁扮粍鐨勫钩鍧囧€?/span>
mean = x.mean()
- 浣跨敤Dask Delayed鎵ц寤惰繜璁$畻锛欴ask Delayed鍏佽鎮ㄥ欢杩熻绠楃洿鍒伴渶瑕佺粨鏋滄椂鎵嶆墽琛屻€傛偍鍙互浣跨敤Dask Delayed鏉ュ苟琛屽寲NumPy璁$畻銆?/li>
from dask import delayed
# 瀹氫箟涓€涓欢杩熷嚱鏁?/span>
@delayed
def compute_mean(x):
return x.mean()
# 骞惰璁$畻鏁扮粍鐨勫钩鍧囧€?/span>
mean = compute_mean(x)
- 浣跨敤Dask Bag浠f浛NumPy Array锛欴ask Bag鏄竴涓彲浠ュ鐞嗕笉瑙勫垯鏁版嵁鐨勬暟鎹粨鏋勶紝瀹冨彲浠ヤ唬鏇縉umPy Array鏉ュ鐞嗛潪缁撴瀯鍖栨暟鎹€?/li>
import dask.bag as db
# 鍒涘缓涓€涓狣ask Bag
data = db.from_sequence([1, 2, 3, 4, 5])
# 璁$畻鏁版嵁鐨勫钩鍧囧€?/span>
mean = data.mean().compute()
閫氳繃杩欎簺鏂规硶锛屾偍鍙互灏哊umPy鍜孌ask闆嗘垚浣跨敤锛屼互瀹炵幇鏇撮珮鏁堢殑骞惰璁$畻銆?/p>